183 research outputs found

    The Effect of Rating Agencies on Herd Behaviour

    Get PDF
    This paper purports to provide some evidence on the effect of rating agencies on herding in financial markets. By means of a laboratory experiment, we investigate the effect and interaction between private and public information. Previous experiments showed that lemmings behaviour can survive in a market context where information is private (Hey and Morone, 2004), and that an experimental market can be very volatile and not efficient in transmitting information (Alfarano et al., 2006). We study experimentally, if socially undesirable behaviour - that survives in a market contest - may be eliminated owing to the presence of rating agencies.herd behaviour; informational cascades; rating agency; bubble

    Effects of Visual Deprivation on Gait Dynamic Stability

    Get PDF
    Vision can improve bipedal upright stability during standing and affect spatiotemporal parameters during walking. However, little is known about the effects of visual deprivation on gait dynamic stability. We have tested 28 subjects during walking under two different visual conditions, full vision (FV) and no vision (NV), measuring their upper body accelerations. Lower accelerations were found in NV for the reduced walking speed. However, the normalized accelerations were higher in the NV than in the FV condition, both in anteroposterior (1.05 ± 0.21 versus 0.88 ± 0.16, P = 0.001) and laterolateral (0.99 ± 0.26 versus 0.78 ± 0.19, P < 0.001) directions. Vision also affected the gait anteroposterior harmony (P = 0.026) and, interacting with the environment, also the latero-lateral one (P = 0.017). Directly (as main factor of the ANOVA) or indirectly (by means of significant interactions with other factors), vision affected all the measured parameters. In conclusion, participants showed an environment-dependent reduction of upper body stability and harmony when deprived by visual feedback

    Rehabilitative devices for a top-down approach

    Get PDF
    In recent years, neurorehabilitation has moved from a "bottom-up" to a "top down" approach. This change has also involved the technological devices developed for motor and cognitive rehabilitation. It implies that during a task or during therapeutic exercises, new "top-down" approaches are being used to stimulate the brain in a more direct way to elicit plasticity-mediated motor re-learning. This is opposed to "Bottom up" approaches, which act at the physical level and attempt to bring about changes at the level of the central neural system. Areas covered: In the present unsystematic review, we present the most promising innovative technological devices that can effectively support rehabilitation based on a top-down approach, according to the most recent neuroscientific and neurocognitive findings. In particular, we explore if and how the use of new technological devices comprising serious exergames, virtual reality, robots, brain computer interfaces, rhythmic music and biofeedback devices might provide a top-down based approach. Expert commentary: Motor and cognitive systems are strongly harnessed in humans and thus cannot be separated in neurorehabilitation. Recently developed technologies in motor-cognitive rehabilitation might have a greater positive effect than conventional therapies

    Artificial Neural Network Detects Hip Muscle Forces as Determinant for Harmonic Walking in People after Stroke

    Get PDF
    Many recent studies have highlighted that the harmony of physiological walking is based on a specific proportion between the durations of the phases of the gait cycle. When this proportion is close to the so-called golden ratio (about 1.618), the gait cycle assumes an autosimilar fractal structure. In stroke patients this harmony is altered, but it is unclear which factor is associated with the ratios between gait phases because these relationships are probably not linear. We used an artificial neural network to determine the weights associable to each factor for determining the ratio between gait phases and hence the harmony of walking. As expected, the gait ratio obtained as the ratio between stride duration and stance duration was found to be associated with walking speed and stride length, but also with hip muscle forces. These muscles could be important for exploiting the recovery of energy typical of the pendular mechanism of walking. Our study also highlighted that the results of an artificial neural network should be associated with a reliability analysis, being a non-deterministic approach. A good level of reliability was found for the findings of our study

    Physiological responses and energy cost of walking on the Gait Trainer with and without body weight support in subacute stroke patients

    Get PDF
    BACKGROUND: Robotic-assisted walking after stroke provides intensive task-oriented training. But, despite the growing diffusion of robotic devices little information is available about cardiorespiratory and metabolic responses during electromechanically-assisted repetitive walking exercise. Aim of the study was to determine whether use of an end-effector gait training (GT) machine with body weight support (BWS) would affect physiological responses and energy cost of walking (ECW) in subacute post-stroke hemiplegic patients. METHODS: Participants: six patients (patient group: PG) with hemiplegia due to stroke (age: 66 ± 15y; time since stroke: 8 ± 3 weeks; four men) and 6 healthy subjects as control group (CG: age, 76 ± 7y; six men). Interventions: overground walking test (OWT) and GT-assisted walking with 0%, 30% and 50% BWS (GT-BWS0%, 30% and 50%). Main Outcome Measures: heart rate (HR), pulmonary ventilation, oxygen consumption, respiratory exchange ratio (RER) and ECW. RESULTS: Intervention conditions significantly affected parameter values in steady state (HR: p = 0.005, V’E: p = 0.001, V'O(2): p < 0.001) and the interaction condition per group affected ECW (p = 0.002). For PG, the most energy (V’O(2) and ECW) demanding conditions were OWT and GT-BWS0%. On the contrary, for CG the least demanding condition was OWT. On the GT, increasing BWS produced a decrease in energy and cardiac demand in both groups. CONCLUSIONS: In PG, GT-BWS walking resulted in less cardiometabolic demand than overground walking. This suggests that GT-BWS walking training might be safer than overground walking training in subacute stroke patients

    Overground walking training with the i-Walker, a robotic servo-assistive device, enhances balance in patients with subacute stroke: a randomized controlled trial

    Get PDF
    Background: Patients affected by mild stroke benefit more from physiological overground walking training than walking-like training performed in place using specific devices. The aim of the study was to evaluate the effects of overground robotic walking training performed with the servo-assistive robotic rollator (i-Walker) on walking, balance, gait stability and falls in a community setting in patients with mild subacute stroke. Methods: Forty-four patients were randomly assigned to two different groups that received the same therapy in two daily 40-min sessions 5 days a week for 4 weeks. Twenty sessions of standard therapy were performed by both groups. In the other 20 sessions the subjects enrolled in the i-Walker-Group (iWG) performed with the i-Walker and the Control-Group patients (CG) performed the same amount of conventional walking oriented therapy. Clinical and instrumented gait assessments were made pre- and post-treatment. The follow-up observation consisted of recording the number of fallers in the community setting after 6 months. Results: Treatment effectiveness was higher in the iWG group in terms of balance improvement (Tinetti: 68.4 ± 27.6 % vs. 48.1 ± 33.9 %, p= 0.033) and 10-m and 6-min timed walking tests (significant interaction between group and time: F(1,40) = 14.252, p = 0.001; and F (1,40) = 7.883, p = 0.008, respectively). When measured, latero-lateral upper body accelerations were reduced in iWG (F= 4.727, p= 0.036), suggesting increased gait stability, which was supported by a reduced number of falls at home. Conclusions: A robotic servo-assisted i-Walker improved walking performance and balance in patients affected by mild/moderate stroke, leading to increased gait stability and reduced falls in the community.Peer ReviewedPostprint (published version

    Artificial neural network analyzing wearable device gait data for identifying patients with stroke unable to return to work

    Get PDF
    A potential dramatic effect of long-term disability due to stroke is the inability to return to work. An accurate prognosis and the identification of the parameters inflating the possibility of return to work after neurorehabilitation are crucial. Many factors may influence it, such as mobility and, in particular, walking ability. In this pilot study, two emerging technologies have been combined with the aim of developing a prognostic tool for identifying patients able to return to work: a wearable inertial measurement unit for gait analysis and an artificial neural network (ANN). Compared with more conventional statistics, the ANN showed a higher accuracy in identifying patients with respect to healthy subjects (90.9 vs. 75.8%) and also in identifying the subjects unable to return to work (93.9 vs. 81.8%). In this last analysis, the duration of double support phase resulted the most important input of the ANN. The potentiality of the ANN, developed also in other fields such as marketing on social networks, could allow a powerful support for clinicians that today should manage a large amount of instrumentally recorded parameters in patients with stroke

    Sensorized assessment of bilateral hand movements in patients with stroke driven by rhythmic auditory or visual-auditory stimulation

    Get PDF
    There is a growing body of literature about the efficacy in neurorehabilitation of the devices providing rhythmic auditory stimulations or visual-auditory stimulations, such as videogames, for guiding the patients' movements. Despite being presented as tools able to motivate patients, their efficacy was not been proven yet, probably due to the limited knowledge about the factors influencing the capability of patients to move the upper limbs following an external stimulus. In this study, we used a marker less system based on two infrared sensors to assess the kinematics of up and down in-phase and anti-phase bilateral hand oscillations synchronized or not with an external stimulus. A group of stroke survivors, one of age-matched healthy subjects and one of young healthy subjects were tested in three conditions: no stimulus, auditory stimulus, and video-auditory stimulus. Our results showed significant negative effects of visual-auditory stimulus in the frequency of movements (p = 0.001), and of auditory stimulus in their fluidity (p = 0.013). These results are conceivably related to the attentional overload required during the execution of bilateral movements driven by an external stimulus. However, a positive effect of external stimulus was found in increasing the range of movements of the less functional hand in all subjects (p = 0.023). These findings highlight as the type of stimulus may play a crucial role in the patient's performance with respect to movements that are not-externally driven

    Italian Version of the Pittsburgh Rehabilitation Participation Scale: Psychometric Analysis of Validity and Reliability

    Get PDF
    Patient’s active participation in therapy is a key component of successful rehabilitation. In fact, low participation has been shown to be a prognostic factor of poor outcome; however, participation is rarely assessed in clinical settings. The Pittsburgh Rehabilitation Participation Scale (PRPS) is a validated, quick, and accurate measure of participation, relying on clinicians’ observation, and not requiring any self-report by patients. The aim of this study was to validate an Italian version of the PRPS. Following forward and back-translation of PRPS into Italian, the translated version was validated in a total of 640 therapy sessions, related to a cohort of 32 patients admitted to an Italian hospital. It was tested for concurrent validity, finding significant correlations with Barthel Index (R &gt; 0.58, p &lt; 0.001) and SF-36 Physical and Mental Health (R &gt; 0.4, p &lt; 0.02), for predictive validity, finding significant correlation with the effectiveness of rehabilitation (R = 0.358, p = 0.045), and for inter-rater and intra-rater reliability, computing an Intra-class correlation coefficient (ICC = 0.926 and 0.756, respectively). These psychometric properties results were similar to those of the original version of this scale. The proposed PRPS can be helpful for Italian clinicians in the assessment of patient’s participation during rehabilitation

    Inside the Michelangelo effect: The role of art and aesthetic attractiveness on perceived fatigue and hand kinematics in virtual painting

    Get PDF
    It has recently been discovered that during a virtual reality task of painting, if the subjects have the illusion of recreating an artistic masterpiece, they improve their performances and perceive less fatigue compared to simply coloring a virtual canvas. This phenomenon has been called the Michelangelo effect. However, it was unclear if this effect was related to the aesthetic experience of beauty or if it was specific to artistic stimuli. To clarify this point, 26 healthy subjects performed the virtual task of erasing a blank sheet on the canvas, revealing an image that could be a painting or a photo, classified as beautiful or not. Beautiful paintings were famous artistic portraits, non-beautiful paintings were rough reproductions of them. Photos of popular people were matched with paintings according to their similarity for somatic traits, posture, and clothes. Beautiful and non-beautiful photos were classified according to whether the pictured person was famous or not for their beauty. For each stimulus the objective beauty, subjective beauty, and effort to complete the task perceived by the subject were self-assessed on a numerical rating scale, recorded and analyzed. Furthermore, the hand kinematic trajectory was instrumentally recorded and its spatiotemporal parameters were computed. Less fatigue was perceived for the paintings than for the photos (p =&nbsp;.020), but not for beautiful versus non-beautiful stimuli (p =&nbsp;.325). Only in the artistic stimuli, subjective beauty was found to be negatively correlated with perceived fatigue (p =&nbsp;.030) and performed errors (p =&nbsp;.005). The kinematic parameters were found to be affected by the interactions between the gender of the participant and that of the person in the photo. These results supported the idea that the Michelangelo effect was stronger when subjects interacted with artefacts, modulated by the perceived beauty of the artistic stimulus
    corecore